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Abstract: - In this paper we develop mathematical models for 3-D, 2-D and one-dimensional hyperbolic heat 
equations (wave equation or telegraph equation) with inner source power and construct their analytical 
solutions for the determination of the initial heat flux for cylindrical sample. In some cases we give expression 
of wave energy. Some solutions of time inverse problems are obtained in the form of first kind Fredholm 
integral equation, but others has been obtained in closed analytical form as series. We viewed both direct and 
inverse problems at the time.  
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1 Introduction 
Contrary to traditional method the intensive 
quenching process uses environmentally friendly 
highly agitated water or low concentration of 
water/mineral salt solutions [1]-[6], 
[33].Traditionally for the mathematical description 
of the intensive quenching process, classical heat 
conduction equation is used. We have proposed to 
use hyperbolic heat equation [10]-[24], [40]-[42] for 
more realistic description of the intensive quenching 
(IQ) process (especially for the initial stage of the 
process). Models of systematic hyperbolic heat 
equation, their mathematical research and solutions 
are discussed in monograph [28].  
The idea of  the usage of hyperbolic heat equation 
can be easily transferred to completely different 
sector of application - to the generation of electricity 
in sea o r ocean by usage of wave energy [7]-[9], 
[29] and [30]. It is important to note, that Ekergard 
and his co-authors [29] examine the development of 
the system in time, describing the equipment with 
ordinary differential equation. Here we describe the 
equipment in development of both - in time as well 
as in spatial arrangement of equipment using the 
multi-dimensional hyperbolic heat equation. Wave 
power plant has to work for long time period in 
moving environment – waves, see [30]. Therefore it 
is important to examine not only the development of 
equipment in time, but also the movement of its 
different components [20]-[24]. Wave energy 
generator models can be viewed both Cartesian 

coordinate and cylindrical co-ordinates. In papers 
[11]-[14], [20]-[27] we investigate the rectangular 
models. Generators of cylindrical form with fin we 
investigate in papers [10], [17] and [18]. For three, 
two and one dimensional cylinder we dedicate this 
paper.  
In our previous papers we have constructed various 
one and two dimensional analytical exact and 
approximate [10]-[16], [19]-[24] solutions for IQ 
processes.  H ere are both - approximate (on the 
basis of conservative averaging method, see [10], 
[19], [24], [25], [31], [32] and exact (on the basis of 
Green function method, see [11]-[16], [21]-[23]). 
We consider three-dimensional, two-dimensional 
and one-dimensional statements for non-
homogeneous equation with non-homogeneous 
boundary conditions. Such statements allow 
constructing mathematical models for wave power 
plants in connection with other equipment, for 
example, with wind power. Boundary conditions 
could be different types, thus they allow us to use 
Green function method.  
In recent years, we have been able to generalize the 
Green's function method to areas, which consist of 
several canonical connected sub-areas, and thus we 
have obtained the exact solutions for the L-, T- and 
Π-type areas [10], [11], [21], [24] - [26]. We have 
constructed of two cylinders [17], [18] and two-
layer sphere [15], [19]. For the cylinder with fin the 
solution was obtained for stationary case and 
hyperbolic heat transfer equation. 
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2 Mathematical Formulation of 3-D 
Problem for IQP or Wave Power  
Already in the introduction we noted that Professor 
M. Leijon, see [29] examined the development of 
system in time. Here we offer to consider the 
description of system in time and space. For this 
purpose instead of the ordinary differential equation, 
we consider the following partial differential 
equation: 
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Here c  is specific heat capacity, k - heat 
conductivity coefficient, ρ - density, rτ - relaxation 

time. The source term ( , , , )F r z tϕ can be from 
different parts of the same device or outer source, for 
example, wind source.  
In the case of wave energy we can assume different 
non-homogeneous boundary conditions. Important is 
to formulate boundary conditions (3), (4) and (5) in 
the heat energy transfer form [15], [17], [27]:  
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Here ih  is heat exchange coefficient. On all the other 
sides of device we have heat exchange with 
environment. In fact it is possible to look at other 
types of boundary conditions: first (Dirichlet) and 
second (Neumann) type. The initial conditions for 
the function ( ), , ,U r z tϕ  are assumed in following 
form: 

00
( , , ),

t
U U r zϕ

=
=                   (6) 

1
0

( , , ).
t

U U r z
t

ϕ
=

∂
=

∂
      (7) 

From the practical point of view in the steel 
quenching the condition (7) can be unrealistic. The 
initial heat flux must be determined theoretically. As 
additional condition we assume that either the 
temperature distribution or the heat fluxes 
distribution at the end of process is given (known): 
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The formulation of the three dimensional 
mathematical model is important for wave energy 
generator [8]. It is good to see from the above point 
on the fig. 1: 

                 
Fig. 1. The view from the above point of cylindrical 
piezoelectric generator from patent [8]. 
For 3-D mathematical model is important that 
solution in ϕ − direction is continuous and 
smooth. These 2 conditions are important for the 
reduction of 3-D model to 2-D model by 
conservative averaging method [10], [31] and 
[32] (see later in the section 5): 
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3 Solution of 3-D Problem 
Firstly we assume that we have non-homogeneous 
Klein-Gordon equation-with source term: 0.C ≥  
The solution in three-dimensional problem is in 
following form: 
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Here are source term and boundary conditions: 
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The Green function [34] - [36] for initial-boundary 
problem for Klein-Gordon equation is known; see 
[37]: 
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Here ( )nJ ξ − is Bessel’s function and 
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The eigenvalues ,nm sµ β  are positive roots of the 
transcendental equations:  
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We assume that at final moment t T=  is known 
only one boundary condition (8). Then from solution 
(12) we easy obtain Fredholm first type integral 
equation with respect to function 
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The unknown right side function ( ), ,r zϕΦ is in 
the following form: 
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Similar situation is, if second boundary 
condition (9) is done. We differentiate solution 
(12) regarding time: 
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We again obtain 1st kind Fredholm integral equation 
for the determination of unknown initial heat flux: 
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There is an interesting situation, if both additional 
conditions (8), (9) are known. In this case we 
introduce new time argument by formula 
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The formulation for new function ( ), , ,V r z tϕ  with 

time variable t  is following: 
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Similar to (12) the solution of inverse problem looks 
like the formulae (12): 
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There it is easy to transform the expression 
for ( ), , ,H x y z t  in following form: 
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For the heat flux in time from (17) we have the 
expression: 
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From last expression at t T= and equality (18) we 
have solution for the time inverse problem: 
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Very interesting is wave energy [38] as you can 
see in [21]: 

( ) ( )2

0 2
0 1 1

sin
.nms

n m s nms

t
I t

λ
λ

∞ ∞ ∞

= = =

=∑∑∑  

4 Solution of 3-D problem with 
constant initial conditions 
In the previous section we have constructed some 
three dimensional solutions for direct and time 
inverse problems for hyperbolic heat equation. Often 
enough initial conditions are constant functions [21], 
[24]. In this case we have to solve the solutions in 
the form of series. For simplicity we look the 
homogeneous boundary conditions: 
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We use the Green function form (14) in the little 
different form: 
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Similarly we can transform the function 1G : 
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In this paper we can show that time reverse 
problem with two final time conditions is not ill-
posed problem and can be solved similarly as 
time direct problem. It was shown in our paper 
[21] that for rectangular sample time reverse 
problem can be solved without some numerical 
problem. It is good known that for inverse 
problem is not easy to calculate the solution [39] 
- [42].  
 
5 Solution of Two Dimensional 
Problem 
Two dimensional problem can be obtained in two 
ways. First way is standard: we use monograph [37] 
for the two-dimensional solution and Green 
function. The mathematical model is in the form: 
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Of course, the temperature distribution and the heat 
fluxes distribution at the end of process is given: 
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The solution of two dimensional problem is in 
following form: 
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The known boundary conditions and source term are 
in the function ( ), ,H r z t : 
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The Green function for two-dimensional problem is 
in the form [37]: 
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− +  
  

= +

+  
= + + + 

+  

∑∑

 The eigenvalues ,n mµ λ  are positive roots of the 
transcendental equations:  

( ) ( ) ( ) 2 3
1 1 0 2

2 3

0, .
tg l k kJ k RJ

k k
λ

µ µ µ
λ λ

+
+ = =

−
 

Here we will obtain the solution for two-dimensional 
problem as it was done in our papers [10], [32], [43] 
and [44] by method of conservative averaging:  
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2

0

1( , , ) ( , , , ) .
2

V r z t U r z t d
π

ϕ ϕ
π

= ∫  

We integrate the main differential equation (1) in the 
direction [ ]0,2ϕ π∈ : 

 

2 2
2

2 2

2

2
0

2

0

1

1 ( , , ),
2

1( , , ) ( , , , ) .
2

V V Va r
t r r r z

U CV f r z t
r

f r z t F r z t d

τ

ϕ π

ϕ

π

π ϕ

ϕ ϕ
π

=

=

 ∂ ∂ ∂ ∂ = + +  ∂ ∂ ∂ ∂  

∂
− +

∂

= ∫

 

The equality (11) gives the two dimensional 
equation: 

2 2
2

2 2

1

( , , ).

V V Va r
t r r r z

CV f r z t

τ
 ∂ ∂ ∂ ∂ = + −  ∂ ∂ ∂ ∂  

+

            (27) 

For this equation as initial and boundary 
conditions is formula (23). 
 
6 Solution of One Dimensional 
Problem  
We will start with a formulation of the mathematical 
model of the steel cylinder which is relatively thin in 
z directions: .l R<<  In accordance with the 
conservative averaging method [31], [32] we 
introduce for two-dimensional formulation from the 
two-dimensional function the following integral 
averaged value (one space-dimensional function): 

( )

( )

1

0

1

0

( , ) ( , , ) ,

( , ) ( , , ) .

l

l

u r t l U r z t dz

f r t l f r z t dz

−

−

=

=

∫

∫
                         (28) 

We integrate equation (27) in the direction z : 
2

2
2

0

1

1 ( , ).
z l

z

u ua r
t r r r

U Cu f r t
l z

τ

=

=

∂  ∂ ∂  = +  ∂ ∂ ∂  

∂
+ − +

∂

            (29) 

The boundary conditions (23) for new function 
( , )u r t are: 

( ) ( )

( ) ( )

2 2

3 3

0

1 1,0, , ,

, , , .
z z l

k U r t r t
l l

k U r l t r t

U Ug
z z

g
= =

+

+

∂ ∂= =
∂ ∂

−
 

 
We look for thin cylinder, it means that we 
have: 
( ) ( ) ( ),0, , , , .U r t U r l t u r t= ≅  

Finally we transform the equation (29) in Klein-
Gordon equation form: 

( ) ( )

2
2

2

2 3

2 3

1 ( , ),

,

( , ) ( , ) , , .

u ua r cu f r t
t r r r

c C k k

f r t f r t r t r tg g

τ
∂  ∂ ∂  = − +  ∂ ∂ ∂  
= + +

= − +





           (30) 

The main differential equation together with 
boundary conditions and initial conditions from 
(25) are in following form: 

( )

( ) ( )

( ) ( )

( ) ( )

1 1

1
1 1

0

0 10
0

1
0 0

0

1
1 1

0

,

( , ) ,

( ), ( ),

( , ) ,

( , ) .

l

t
t

l

l

r R

u k u t
r

t l g z t dz

uu u r u r
t

u t l U z t dz

t l U z t dz

g

g

u

−

=
=

−

−

=

∂ + ∂ 

=

∂
= =

∂

=

=

=

∫

∫

∫

             (31) 

Solution of this problem is with Green function 
(see [35], [37]): 

( )

( )

( )

0
0

1
0

2
1

0

0 0

( , ) ( ) ( , , )

( , , )

( , , )

, ( , , ) .

R

R

t

t R

u r t u G r t d
t

u G r t d

a g G r R t d

d f G r t d

τ

ξ ξ ξ

ξ ξ ξ

τ τ τ

τ ξ τ ξ τ ξ

∂
= +

∂

+

− +

−

∫

∫

∫

∫ ∫ 

              (32) 

Green function from [37] is in the form: 

( ) ( )

( )

2
0

2 2 2 2 2
1 1 0

2 2

0 2

2( , , )

sin
, .

n
n

n n n

nn n
n

m

rJ
RG r t

R k R J

t aJ c
R R

τ

µµ
ξξ

µ µ

λµ ξ µλ
λ

∞

=

 
 
 = ×

+

  = + 
 

∑
        ( )33  
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The eigenvalues nµ  are positive roots of the 
transcendental equation:           

( ) ( )1 1 0 0.J k RJµ µ µ− =  
Other situation is for cylinder with small 
diameter: .R l<<  We define from (27) new 
function ( ),v z t : 

2
0

2
0

1( , ) ( , , ) ,

1( , ) ( , , ) .

R

R

v z t rV r z t dr
R

f z t rf r z t dr
R

=

=

∫

∫


 

We integrate the modified differential equation (27) 
in r direction: 

2 2
2

2 2 ( , , ).rV V rVa r CrV rf r z t
t r r zτ

 ∂ ∂ ∂ ∂ = + − +  ∂ ∂ ∂ ∂  
This gives: 

2 2
2

2 2
0

( , ).
r R

r

v v Va r Cv f z t
t z rτ

=

=

∂ ∂ ∂
= + − +

∂ ∂ ∂



 

The boundary condition in the r  direction gives: 

( )1 1

0

( , ) , ,

0.

r R

r

r k RV R t R z t

r

V g
r
V
r

=

=

− +
∂ =
∂

∂ =
∂

 

Finally we have the one dimensional Klein-
Gordon partial differential equation: 

( )

( ) ( )

2 2
2

2 2

1 1

, ,

, , ( , ) , .

v va dv z t
t z

d C k R z t f z t R z t

g

g g

τ
∂ ∂= − +
∂ ∂
= + = +



            (34) 

The boundary conditions and initial conditions 
from (23) can be rewritten in following form: 

( )

( )

2

3

0 10
0

2
0

3

,

,

( ), ( ).
t

t

z

z l

t

t

vv v z v z
t

v k v g
z

v k v g
z

=
=

=

=

 
 
 

 
 
 

∂
= =

∂

∂ − =
∂

∂ + =
∂

             (35) 

Here the new averaged functions are: 

( ) ( )

0 0 1 12 2
0 0

2 2 3 32 2
0 0

1 1( ) ( , ) , ( ) ( , ) ,

1 1( , ) , ( , ) .

R R

R R

v z rU r z dr v z rU r z dr
R R

t rg r t dr t rg r t dr
R R

g g

= =

= =

∫ ∫

∫ ∫
 

We have solution in following form: 

( )

( )

( )

( )

0
0

1
0

2
2

0

2
3

0

0 0

( , ) ( ) ( , , )

( , , )

( ,0, )

( , , )

, ( , , ) .

l

l

t

t

t l

z t v G z t d
t

v G z t d

a g G z t d

a g G z l t d

d g G z t d

τ

τ

ν η η η

η η η

τ τ τ

τ τ τ

τ η τ η τ η

∂
= +

∂

−

− +

− +

−

∫

∫

∫

∫

∫ ∫

  (36) 

Green function in this case is [35], [37]: 

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2 2
1

2

2 2 2
22 2 2

2 2 2 2 2
3

sin
( , , ) ,

cos sin ,

1 .
2 2 2

n n n

n n n

n n n
n

n
n

n n n n

y z y t a d
G z t

y a d
ky z z z

kk k kly
k

τ

τ

ς λ
η

λ

λ λ
λ

λ
λ λ λ λ

∞
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+
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+
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 +
= + + + +  

∑

 (37) 

The eigenvalues nλ  are positive roots of the 
transcendental equations:  

( ) 2 3
2

2 3

.
tg l k k

k k
λ
λ λ

+
=

−
 

For both one dimensional problems we have two 
final conditions. For the problem (30), (31) the 
additional conditions are: 

1( ), ( ).T Tt T
t T

uu u r u r
t=

=

∂
= =

∂
   (38) 

And for the problem (34), (35) the additional 
conditions are: 

1( ), ( ).T Tt T
t T

vv v z v z
t=

=

∂
= =

∂
   (39) 

 
7 Time Inverse One Dimensional 
Problem 
We would like to continue with the one dimensional 
problem (30)-(32) with time inverse formulation 
(17) for ( , )u r t : 

( )

( )

2
2

2

1
0

0

1 ( , ), 40

0, , (0, ], ( ), ( ),T Tt
t

u ua r cu f r T t
t r r r

ur R t T u u r u r
t

τ

=
=

∂  ∂ ∂  = − + −  ∂ ∂ ∂  
∂

∈ ∈ = = −
∂
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( )1 1

0 1
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( ), ( ).
t T

t T

r R

u k u T t
r

uu u r u r
t

g

=
=

=

∂ + − ∂ 

∂
= = −

∂

=









                

Solution is similar with formula (32): 
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1
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2
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0

0 0
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τ τ τ
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∂

+
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∫

∫
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The solution can be rewritten in following form: 
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∂
= −

∂

+

− +
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∫

∫

∫
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          (41) 

For the heat flux we have an expression: 
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∂
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∂

∂
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∫

∫
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From here, a nice explicit representation of the 
necessary initial heat flux immediately follows: 
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12
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=

=

∂
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∂

∂
+

∂

+

∫

∫

∫















 

      
8 Solution of 1-D problem with 
constant initial conditions 
We would like to finish with the one dimensional 
solution with a simplification for constant initial 
conditions in the formulation (34)-(35): 

0 00

1 1
0

( ) ,

( ) .

t

t

v v z v const

v v z v const
t

=

=

= = =

∂
= = =

∂

              (43) 

The solution of the time direct problem is the 
following. We assume that ( ) ( )2, tz t gg = =  

( )3 0tg = :  

0
0

1 0 0 1 1
0

( , ) ( , , )

( , , ) .

l

l

u z t v G z t d
t

v G z t d v I v I

ξ ξ
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∂
= +

∂

= +

∫

∫
              (44) 

Intensive steel quenching process with initial 
conditions (43) is very natural [10]-[14]. We have 
the homogeneous equation (34) and the 
homogeneous boundary conditions. As next step we 
integrate Green functions in the formula (44): 
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=
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=

∂
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Finally it means that we have expression for 
temperature in the form of series: 

( ) ( )

( ) ( )
0 0 1 1 2

1

2 2 2 2
0 1

( , )

cos sin .

n n

n n n

n n

y z y l
u x t v I v I

y
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λ
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∞

=

= + = ×

 + + +  

∑
 (45) 

Similarly we can transform the derivative for 
heat flux in the form of series: 

2

0 2
0

( , , )
lu v G z t d

t t
η η∂ ∂

= +
∂ ∂∫  
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       (46) 
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−
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∂

+
+

+
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+

+

∑
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Numerical results for the formulation (34)-(35) 
are the same as in the paper [23]. 
 

9 Conclusion  
We have constructed some solutions for direct and 
time inverse problems for hyperbolic heat equation. 
The solutions for determination of initial heat flux 
are obtained either in the form of Fredholm integral 
equation of 1st kind with continuous kernel or in the 
closed analytical form – in the form of series or 
ordinary integrals. 
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